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The iteration of CebySev polynomials generates mixing trans- 
formations that model canonical features of chaotic systems: These 
include pseudo-random evolution, ergodicity, fading memory, and the 
irreversible dispersal of any set of positive measure throughout the 
mixing region. Mixing processes are also analytically and numerically un- 
stable. Nevertheless, iterative interpolation, or numerical retrodiction, 
demonstrates that the computer generated trajectories are shadowed 
within strict error bounds by exact CebySev iterates. Pervasive 
shadowing is, however, not sufficient to ensure a generic corre- 
spondence between computer simulations and “true dynamics.” This 
latitude is illustrated by several basic distinctions between the computer 
generated orbit structures and the exact analytic orbits of the (5ebySev 
mixing transformations. 0 1992 Academic Press, Inc. 
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1. INTRODUCTION 

1.1. Dynamical Instability and Shadowing 

The description of chaotic systems involves two 
seemingly contradictory requirements. On the one hand, the 
dynamical systems that are used to model stochastic pro- 
cesses such as the mixing of cocoa in milk must be very sen- 
sitive to small variations in the initial conditions or other 
perturbations; but at the same time the correspondence 
between the dynamical systems and computer simulations 
must be sufficiently robust so that numerical results can be 
meaningfully compared with theoretical predictions. Simply 
put, the evolution of these systems must appear to be 
dynamically unstable as well as numerically stable. Anosov 
[ 11, Bowen [2], and Hammel, Yorke, and Grebogi [3,4] 
have shown that these nominally antithetic stability criteria 
can be reconciled for a wide class of dynamical systems by 
the construction of shadowing trajectories--that is, iterative 
sequences of the exact dynamics that follow the computer 
generated values within strict error bounds. In the present 
work these results are extended to the “fully developed 
chaos” that is generated by iterating the logistic map 

xn + fL(X,) = axn( 1 - x,1 = x, + I (1.1) 

when u =4 and O< x, d 1 [S, 61. Since, in this case, 
Eq. (1.1 ), is conjugate to the quadratic cebygev polynomial, 
whose analytic and computer generated orbit structures are 
known [7-111, the shadowing sequences can be con- 
structed explicitly by iterative interpolation. These methods 
can be used to verify that all of the computer orbits of (1.1) 
are in fact shadowed by exact Cebygev iterates. 

Howe\;er, these strong shadowing properties do not 
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guarantee that there is a generic correspondence between 
the computer simulations and the exact orbit structure of 
the CebySev mixing transformations. The discrete and finite 
nature of machine computations imposes a number of 
unavoidable restrictions on the numerical orbits. First of 
all, in contrast to the analytic Cebyiev iterations, which 
generally extend indefinitely far into the “past” and the 
“future,” the computer sequences are all strictly limited in 
length: they begin at points that do not have any pre-images 
in the set of accessible computer numbers; and they end by 
merging into terminal cycles. Numerical divergences are 
suppressed. Furthermore, while all of the denumerably 
infinite cycles of the CebySev iterates are repulsive, the com- 
puter generated terminal cycles are all embedded in attrac- 
tor basins. The pseudo-random character of the computer 
sequences also implies that the orbits associated with these 
attractors have specific statistical attributes. For instance, 
about 80 % of all the computer numbers are part of a single 
dominant orbit [lo], and approximately 65 % of the itera- 
tion sequences contained in this dominant orbit enter the 
terminal loop through a single point [ 1 l-131. 

tion for the empirical agreement between statistical proper- 
ties derived from computer experiments and theoretical 
predictions [ 8, 141. 

All of these combinatorial properties of the computer 
generated orbits are reflected in the associated set of 
shadowing trajectories: But these, in turn, are only a finite 
fragment of the exact CebySev orbits-these include 
uncountably many acyclic orbits each with a countably 
infinite number of elements, as well as a countably infinite 
number of cyclic orbits each with a countably infinite 
number of elements [9]. Clearly, the existence of shadowing 
trajectories cannot bridge the gap between machine com- 
putations and infinite processes. Nevertheless shadowing is 
a useful means for checking the fidelity of the machine 
simulations of chaotic systems and furnishes some justitica- 

and this formal diversity makes it possible for dynamical 
instability to coexist with robust numerical approximations. 
The simplest illustration of these options occurs in the 
classical theory of dynamical stability. Specifically, let z( t, p) 
be the solution of a problem in Newtonian mechanics where 
t is the time, and p = {p,, j= 1, . . . . N} denotes a set of 
parameters representing constraints and boundary condi- 
tions. Suppose further that all the physically relevant values 
of the pj’s span some parameter space, and that there is a 
particular point p. in this space associated with the unper- 
turbed trajectory z( t, p,,). Then if p denotes any other point 
in a neighborhood S of po, the corresponding trajectory 
z( t, p) will describe a perturbed motion. The basic Liapunov 
stability criterion then asserts that the unperturbed trajec- 
tory z(t, po) is stable with respect to variations of p in the 
parameter set S if for each E > 0 there is a 6 > 0 such that the 
inequality 

(1.2a) 

implies 

Iz(c PO) - z(c P)I < 6 (1.2b) 

for some time interval t > t,, [ 15, 161. Geometrically this 
simply means that the perturbed and unperturbed trajec- 
tories track each other within the hypercylinder (1.2b), if the 
base or cross section cut by the plane I = t,, at the initial 
instant, i.e., (1.2a), is sufficiently small. 

represented by 

Suppose now that for convenience in numerical evalua- 
tion z(t, po) is approximated by an interpolation polyno- 
mial. In the simplest case of Lagrange interpolation over the 
set to< ... <tic ... <t,, this means that z(t, p,,) is 

In Sections 1.2-1.6 we briefly review the connections dt> PO) = i /j(l) Z(r,j2 PO) + Rn(t5 PO), 

between stability and approximation criteria in classical 
,=v 

and abstract dynamics. The emphasis throughout is on where 
the physical background of the abstract stability and 
shadowing concepts. This orientation will turn out to be (t - to). . . (t - tjp 1)(t- tj+ ,). . . (t - t,) 
helpful in following the winding trail of mathematical I,(t) = 
theorems, plausibility arguments, and computer verilica- 

(lj-fo)...(fj-~j~I)(tj-tj+,)-+-zt,) 

tions that leads from abstract shadowing to machine 
simulations. 

and the remainder term is bounded by 

1.2. Stability and Approximation Criteria 
in Classical Dynamics 

(1.3a) 

(1.3b) 

(1.3c) 

The construction of shadowing trajectories generally Clearly, if the time dependence of z(t, po) is sufficiently 
requires a combination of methods drawn from dynamical smooth so that the derivative bounds in (1.3~) ensure small 
systems theory, numerical analysis, and computer program- error estimates, polynomial interpolation can be numeri- 
ming. Each of these components involves distinct criteria for tally useful. Since this condition is independent of the nature 
approximating or comparing one trajectory with another, of the variation of z( to, p) with respect to the parameter set 
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p,, it is in principle possible to construct polynomial 
approximations for the unperturbed motion z( t, pO), even if 
this trajectory is dynamically unstable. 

1.3. Stability and Instability Criteria 
for Anosov Diffeomorpbisms 

Approximate representations of unstable dynamics are 
utilized in practice for modeling non-linear oscillators and 
other systems that have chaotic vibrations and a sensitive 
dependence on initial conditions [ 171. In these cases, 
neighboring trajectories do not remain clustered together, 
as presumed in (1.2b), but rather spread out rapidly 
throughout the accessible phase space. This dispersive 
property can also be used to characterize instability in 
abstract dynamical systems such as Anosov diffeo- 
morphisms. In this formalism the evolution of a system 
through a set of states, x0, xi, . . . . xj, is described by the 
iteration of a mapping, i.e., 

X0’ x, - x2 -...- X’ 
I’ (1.4a) 

f t t 

x0 -f(-yo) -f2(xtJ - . ..---+fj(xo). (1.4b) 

In analogy with the f-space of classical statistical 
mechanics, the XI’S specify the complete configuration of the 
system. For simplicity, we will assume that this configura- 
tion space M, is an open subset of m-dimensional Euclidean 
space W”. The corresponding m-component mappings do 
not have to be derivable from any Hamiltonian, although 
indirect mechanical constructions may be possible [ 181. 

The clustering and dispersion of trajectories in this 
iterative scheme can be characterized by straightforward 
generalizations of the corresponding notions in classical 
dynamics. The simplest classical prototype is the saddle 
shaped electric potential of a Penning trap [ 191. In practice, 
this hyperbolic energy surface can be set up by applying 
opposing voltages to orthogonal pairs of hyperbolically 
shaped electrodes. In this case the Jacobian of the potential 
reduces to the gradient; and this, in turn, indicates the 
directions of bounded and unbounded oscillations when a 
charged particle is inserted into the trap [20]. 

In the abstract version of the theory the scalar potential 
is replaced by the m-component mapping5 The generaliza- 
tion of the gradient criterion for bounded or unbounded 
oscillations is then expressed in terms of the action of the 
Jacobian in contracting or expanding vectors in the systems’ 
configuration space. Specifically, let Df(x) denote the m x m 
Jacobian matrix of first partial derivatives of the com- 
ponents off at the point x. Then if 5 is a vector in R”, 
the matrix product, Of (x)5, is a linear transformation 
that generally alters the length of 5. In particular, if 
IlDf(x){ll < 111;11, where the double bars denote the norm, 

the vector r is contracted for f at x. Similarly, if 
IlDf(x)[li > ~~~~~, then i is an expanding vector forf at x. In 
analogy with the Penning trap example, a point x is said to 
be hyperbolic if every associated Jacobian vector transfor- 
mation can be represented in terms of contracting and 
expanding vectors at x. 

These intuitively plausible notions can now be extended 
by introducing some additional structure [ 1, 211: 

(1) If f is a diffeomorphism, i.e., both f and its inverse 
f-’ are continuously differentiable, then the sequence of 
states ( 1.4b) can evolve forwards (f j) as well as backwards 
(f-j); this is the iterative counterpart of time reversible 
motion. 

(2) The general stability criterion for these systems can 
then be expressed in terms of a uniform contraction condi- 
tion: A vector 5 E iRM is a contracting or stable vector for f 
at x if there are positive constants c and A < 1, such that 

IPf’b)tll dci’ 11511 for all jb0. (1.5) 

If the evolution index j is identified with discrete time 
increments, then (1.5) is an iterative analogue of the 
Liapunov criterion (1.2b). 

(3) Instability, or the dispersion of trajectories, can be 
described by a complementary condition: A vector [ E R” is 
an expanding or unstable vector for f at x if there are positive 
constants C and X, such that 

lWf’(x)ill 2 21’ llill for all j > 0. (1.6) 

Since f is a diffeomorphism, (1.6) is also equivalent to a 
contraction condition for successive pre-images off, i.e., 

IWf -‘(x)ill B cl’ llill for all j > 0. (1.7) 

The inverse relation of (1.6) and (1.7) has an obvious 
analogue in classical dynamics-running the film of a 
dispersing water spray backwards yields the images of a 
convergent implosion. It will become apparent in Sections 
1.5 and 1.6 that “inverse” stability criteria such as (1.7) are 
the key to the construction of shadowing trajectories. 

(4) Since Anosov diffeomorphisms are intended to 
illustrate the behavior of chaotic systems, it is desirable to 
eliminate trajectories that correspond to smooth and 
incompressible laminar flows. This can be done by 
strengthening the conditions associated with hyperbolic 
points. Specifically, for a given diffeomorphism f and a 
particular point x, let E”‘(x) denote the linear subspace 
of IF!” spanned by all the contracting vectors satisfying 
(1.5). Furthermore, let E”“(x) be the linear subspace of R” 
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spanned by all the unstable or expanding vectors satisfying where h is a homeomorphism close to the identity function 
(1.6). Then x is a hyperbolic point if in the Co topology [21,23]. 

E”‘(x)@ E”“(x) = R”. (1.8) 

In analogy with the Penning trap dynamics, this condition 
ensures that all the trajectories passing through x either 
condense or disperse; parallel flow or neutral equilibrium is 
excluded. 

(5) The essential content of this abstract dynamics can 
now be summarized in the definition of a hyperbolic set 
[21]: A set /i c M, where A4 is the configuration space of 
the system, is a uniform hyperbolic set forfif /i is compact, 
invariant under the action off, i.e., fit = A, and if every 
point x E n is hyperbolic. This means that there are positive 
constants c and A < 1, independent of x, such that 

Iwf’(x)tll Qd’ 11511, 
VxEA, tEES’(x),j20; (1.9a) 

Ilw-‘(~)ill d CA’ 11111, 
VXEA, (~E”“(x),j20. (1.9b) 

The stability condition (1.9a) and the instability condition 
(1.9b) are obvious extensions of (1.5) and (1.7). 

Finally, if the entire configuration space M is a hyperbolic 
set for f, then f is said to be an Anosov diffeomorphism. 

1.4. Approximation Criteria for Anosov 
Diffeomorphisms: Structural Stability 

and Shadowing 

Chaotic evolution and robust approximation are com- 
patible for Anosov diffeomorphisms because these systems 
are both dynamically unstable as well as structurally stable. 
According to Eqs. (1.6) (1.7) and (1.9b), dynamical 
instability merely requires a local dispersion of neighboring 
trajectories. In contrast, structural stability refers to the 
global response of the entire set of iterative sequences 
(1.4b) if the diffeomorphism f is shifted. Physically, this 
corresponds to changing the dynamics of particles in a 
Penning trap by modifying the electrodes or altering the 
applied voltages. Suppose, in particular, that f and g are two 
Anosov diffeomorphisms associated with the conliguration 
space M, where g is obtained by a small perturbation 
off: Technically this means that f is close to g in the C’ 
topology, or that f and g, as well as their first derivatives, 
differ only slightly [22]. Under these circumstances, the 
orbits off are isomorphically mapped onto the orbits of g by 
the conjugacy transform 

g=hofoh-‘, (1.10) 

Structural stability is an extremely restrictive condition. It 
implies that the iterative properties of the trajectories in 
(1.4b)-including the attraction or repulsion of cycles-are 
preserved under small perturbations of f: Consequently, 
even if the individual iterations in (1.4b) are perturbed so as 
to cause large cumulative shifts of the configurations xi, 
structural stability ensures that these deviations do not alter 
the global dynamics generated by J The approximations 
introduced by “stabilized perturbations” of this type can be 
described by means of pseudo-trajectories and shadowing 
trajectories. 

A pseudo-trajectory of f is obtained from an exact 
trajectory such as (1.4a), (1.4b) 

x,+f(x,)+f(x1)+ ... -f(xj)-+ ... (1.11) 

by inserting step-wise perturbations Sj between each 
iteration, i.e., 

x,+s,~f(xb)+s,-f(x;)+a*- “’ +flx;-])+s,-P ... (1.12a) 

I I I I xb - x; - x; +... d x;----+... (1.12b) 

If the exact trajectory {xj} is dynamically unstable then 
generally it will not be followed by the pseudo-trajectory 
{xi}. In fact, if d is a metric on the configuration space M, 
then the only restriction on the distance between xi and xi 
is that 

Max 
O<j<N 

{ d(xj, XI)} < diam M, (1.13a) 

where the diameter of M is given by 

diamM=sup{d(p,q)Ip,qEM}. (1.13b) 

Nevertheless, the wandering of the pseudo-trajectory {xi} is 
severely constrained by the structural stability off: 

To be precise, suppose that every one of the individual 
perturbations Sj in (1.12a) is limited by a fixed bound S, i.e., 

d(f(xJ-,), xJ-4 ObjdN. (1.14) 

Such bounded, step-wise perturbations are said to generate 
6 pseudo-trajectories. Then the order imposed by structural 
stability is expressed by the 

SHADOWING THEOREM OF ANOSOV [l] AND BOWEN 
[2]. Suppose that f is an Anosov diffeomorphism over M, 
and that {xi} is a 6 pseudo-trajectory derivedfrom the exact 
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trajectory {x,1. Then there exists at least one other exact 
trajectory { y,} in A4 generated by 

that approximates or shadows the pseudo-trajectory within a 
precision E > 0, i.e., 

d(f(y,-,)>x,T<E (1.16) 

for all 0 d j < N, and sufficiently small 6 > 0. 

The exact sense in which chaotic evolution and robust 
approximation coexist for Anosov diffeomorphisms can 
now finally be summarized by the interrelation of three 
sequences: If {x,) is an exact but unstable trajectory 
of f, then the perturbed 6 pseudo-trajectory {xi} will 
progressively deviate from {x,} for increasing j. However, 
the wandering of the pseudo-trajectory is not arbitrary 
because there is at least one other exact trajectory { y,} off 
that approximates or shadows {XI} within strict error 
bounds. 

1.5. Shadowing in Computer Simulations 
of Unstable Systems 

At first sight it seems plausible to identify the perturba- 
tions S, in (1.12a) with the roundoff and truncation errors 
that occur in computer simulations. In particular, if a device 
is programmed to generate the unstable trajectories of an 
Anosov system, it is tempting to argue that the shadowing 
theorem ensures that the simulations cannot possibly 
go wrong-the effect of roundoff is simply to shift the 
computed sequence of values from the vicinity of one exact 
trajectory to the proximity of another exact trajectory [ 141. 
Unfortunately this argument is flawed because the analytic 
orbits and computer trajectories are not in one-to-one 
correspondence as stipulated in (1.10) [24]. Nevertheless, 
empirical evidence for shadowing can be inferred from 
computer simulations of chaotic systems [25,26,9, 143. 
For example, in a mixing process on an interval the values 
of the iterates {xi> and { yj} are usually so thoroughly 
dispersed that eventually their relative distribution becomes 
independent of the starting points x0 and y0 (fading 
memory!). The statistical properties of these distributions 
are determined by the probabilistic metric spaces associated 
with the mixing processes [27]. In particular cases these 
distributions can be obtained explicitly and compared with 
the results of computer experiments. The agreement turns 
out to be uniformly excellent even though the statistical 
computer results are obtained from iterations extending 
into the millions, while the numerical accuracy of an 
individual element xj is completely obliterated by roundoff 
after only 50 iterations [IS] ! 

Another striking trend of the computer simulations is that 
consistent statistical results can be obtained from iterations 
of the Henon map, which is not uniformly hyperbolic 
[4, 143, and also from iterations of the logistic map (l.l), 
which is not even a diffeomorphism. This extensive 
experience suggests that the cumulative numerical distor- 
tions due to roundoff noise are not arbitrary but con- 
strained by computer shadowing effects that generalize the 
structural stability of Anosov systems. 

Precise results for computer shadowing were first 
established by Hammel, Yorke, and Grebogi [3,4]. To 
be specific, let g, denote a computer implementation of 
the general logistic map fL : ax,( 1 - x,) = x, + 1, where 
0 < a d 4, and 0 < x, d 1. Clearly, g, andf, are qualitatively 
different objects that are not related by a conjugacy trans- 
form such as (1.10). Nevertheless, the computer iterations of 
g, can be displayed in an array similar to (1.12a) and 
(l.l2b), 

xo+s,~g,(xb)+6,~g,(x;)+6,~ -+gL(x;_,)+i,+ (1.17a) 

I I I I 
xb - x; AX; - - i; - (1.17b) 

where the 5,‘s represent the numerical perturbations intro- 
duced by roundoff and truncation. The overbars are nota- 
tional reminders that all computer numbers have limited 
precision; e.g., 14 decimal digits on a Cray X-MP. In 
analogy with (1.14), it is reasonable to assume that all the 
incremental perturbations in (1.17a) are bounded, i.e., 

Ig&-l)-z;l -es. (1.18) 

Consequently all the computer generated iterates of g, are 
numerical versions of 6 pseudo-trajectories. 

The parallel with the Anosov-Bowen theory can now be 
extended in an obvious way by defining exact trajectories of 
g, by means of unperturbed iterations, 

x0 + g&f()) + ‘. . + gL(xj) -+ . . . (1.19) 

In analogy with (l.l3a), the numerical instability of the 
gL-iterations results in a progressive divergence between the 
exact and approximate computer trajectories. Specifically, if 
we set 

Ix,-xbI =o, then (\Zj-~~l)j,50-0(1). (1.20) 

However, just as in the abstract dynamical theory, the 
wandering of the computer generated trajectories 1%;‘) is 
not arbitrary, but constrained by a set of 

COMPUTER SHADOWING THEOREMS [3,41. Suppose the 
logistic map g, : Xj + aZj( 1 - Xi) is iterated on a Cray X-MP 
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with 14 digit precision. The step-wise computing noise (1.18) 
is then bounded by s< 3 x 10-14. Zf the iterations are started 
at X0 = 0.4, and the logistic parameter is fixed at a = 3.8, 
then there exists an exact trajectory { yj}-generated by 
gjL(yO) = jjj, cf (1.19)-that approximates, or shadows, the 
computer generated trajectory (xi} with a maximum error 
given by 

Ij,-.?;I < 10-8, O<j,<107. (1.21) 

Similar results can be obtainedfor X0 = 0.4 anda = 3.6,3.625, 
3.65, 3.75, as well as other combinations of x,, and a. 

The method of proof is essentially based on the “inverse” 
stability criterion (1.7). Starting with the numerical values 
at the end of the computed sequence of iterates, i.e., (1.17b) 
rewritten in reverse order, 

X;07tX;07L1C ... tx;, (1.22) 

the existence of a shadowing trajectory { jj,} is inferred by 
retrodiction. Specifically let jj1,,7 =X&J. Then both of the 
pre-tmages ylO,- i and Xio7-, will lie in an interval Zi07-, , 
and similarly the next set of pre-images yi07 ~ 2 and Xi07 _ 2 
will lie in an interval Z,07 _ *. Since these pre-images effec- 
tively trace a divergent spray of trajectories backwards, it is 
plausible that the corresponding intervals satisfy the nesting 
condition Z i07 _ i 2 Zi07 _ *. In fact the stability criterion (1 .I) 
implies that all of the intervals associated with the reversion 
of (1.22) are non-expanding, J.~JZ,- i. Therefore, if the 
inclusions j ,0~ _ i E Zi07 _ , and X’i07 _ i E Zi07 ~ i yield the initial 
bound 1 yi,,~ i - X;,,L ,I < 10P8, then it is also plausible 
that successive pre-image pairs will satisfy (1.21). 

Bounding the location of the exact trajectories {yi} by 
means of intervals avoids the need for “error-free” calcula- 
tions of the individual terms. However, since there is only a 
heuristic connection between the analytic convergence 
criterion (1.7) and the behavior of the computer trajectories, 
the interval inclusions ZjzZj-, have to be checked by 
explicit calculations for each choice of a, x0, and at every 
step of the reversions, 0 < j < N = 10’. The variability of the 
results is illustrated by the fact that the shadowing condition 
(1.21) is satisfied for a = 3.75 and X, = 0.4, but fails if 
the computer iterations are started at X,=0.3 [3]. Since 
the detailed verification of the interval nesting condition 
Z, 2 I,- i , involves tedious and time consuming calculations; 
and even simple algorithms such as the logistic map can 
generate an enormous number of trajectories, it is not 
feasible to amalgamate individual shadowing results such 
as (1.21) into general theorems concerning the “true” 
dynamics of computer simulations. 

1.6. Shadowing in CebySev Mixing Simulations 

In the special case of the “fully chaotic” logistic map 4x, 
(1-x,)=x,+1, it is possible to show that all of the com- 

puter generated sequences of iterates are shadowed by exact 
trajectories. The key idea-following Hammel, Yorke, and 
Grebogi-is to start at the back end of the computer 
sequences, and then to construct the shadowing trajectories 
by step-wise retrodiction. These constructions can be 
carried out explicitly for the chaotic map (1.1) by adapting 
a number of results from the theory of CebyHev mixing 
transformations: 

(1) First, the general Anosov convergence criteria, (1.6) 
and (1.7), are replaced by a sharper CebySev spreading 
theorem [9, 11,281. This ensures that any interval of 
length )I/ > 0 is irreversibly dispersed over the entire 
mixing domain after about (log 1111 iterations. Tracing this 
interval dispersion pattern backwards generally yields 
many shadowing trajectories for each computer generated 
pseudo-trajectory. 

(2) None of the logistic maps lit into the framework 
of the Anosov-Bowen theory because they are not one- 
to-one functions. However, it is precisely this multiplicity 
of pre-images that is essential for the construction of 
shadowing trajectories. The simplest illustration is provided 
by the iterates of the quadratic Ceby6ev polynomial 
C,: x +x2 - 2, 1x1 d 2, which is conjugate to (1.1): 

+[(x+2)“*+2]“* 
L 

[(x+2)]“* 
7 

-[(x+2)“*+2]“* 
\ 

x+x2-2-+ . . . . 

+[-(x+2)i’2+2]“2 
L i 

- [(x+2)3i’2 

-[-(x+2)i’2+2]i’2 (1.23) 

Clearly the element x has two pre-images, or first generation 
ancestors, and by extension an ancestral tree of g genera- 
tions contains a total of 2(2” - 1) distinct pre-images for all 
x # - 2. Since a computer, such as a VAX 3600 operating in 
double precision, has an ultimate numerical resolution of 
about one part in 255, any ancestral tree exceeding 55 
generations will tend to saturate the computer. The implica- 
tion for shadowing is that practically every computed value 
of a Cebysev iterate can be reached through a pre-image 
chain in a 55 generation tree rooted at an arbitrary initial 
point! This result complements the preceding CebySev 
spreading estimate, i.e., Ilog, 2 ~ 551 = 55. 

The selection of a pre-image chain leading to a particular 
ancestral element proceeds in a direction opposite to that of 
“time’s arrow.” This arrow is fixed by the convention that 
forward images correspond to later times. In the case of the 
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CebySev iterates there is a fundamental asymmetry between 
past and future because none of these mappings is invertible. 
This is evident from (1.23): the forward mapping x + x2 - 2 
is completely determined by the C2 algorithm, but the 
selection of one of the pre-images, + [x + 2]“2, requires 
a supplemental rule or some additional information. In 
this simple but deep sense the past dynamics of a CebySev 
trajectory cannot be recovered by the expedient of “running 
the film backwards”! 

However, pre-images can be selected by retrodiction in 
order to construct shadowing trajectories. Since the com- 
puter generated iterates of a pseudo-trajectory {x1} are 
already available, the corresponding shadowing elements 
are determined simply by choosing the pre-images that most 
closely match the given XI values. 

(3) The computer version of the shadowing criterion 
Ix,~ - xi 1 < E is useful only insofar as the values of the exact 
iterates X~ are known. In the HYG approach, outlined in 
Section 1.5, this problem is finessed by means of interval 
arithmetic. However, in the CebySev case more direct 
methods are available. It is apparent from (1.17a) and (1.19) 
that the accumulation of errors in the pseudo-trajectories 
(xi} is due to the iterative nature of the computations. 
These errors can be minimized in the CebySev simulations 
by using compact analytical expressions to generate all the 
req,uisite pre-images. The numerical evaluation of each 
iterate is then independent of the results of prior calcula- 
tions and limited only by the precision of the computers’ 
floating point lattice [29]. 

(4) Shadowing trajectories for general logistic maps are 
said to separate from pseudo-trajectories at points where the 
computer trials show that the associated interval nesting 
conditions are violated [3]. Sharper results may be 
obtained for the CebySev iterations because in these simula- 
tions all of the computer generated pseudo-trajectories can 
be shadowed from end to beginning. Specifically, for a given 
pseudo-trajectory {xl > the shadowing sequence of pre- 
images starts at either a fixed point or terminal cycle and 
then traces the pseudo-trajectory up to its initial element 2;. 
The shadowing process cannot be continued beyond this 
point simply because 2; has no pre-images in the set of 
accessible computer numbers. 

The methods used in the construction of shadowing tra- 
jectories are explained in detail in Section 2. We begin with 
the simple case of a CebySev computer orbit that terminates 
in a two-cycle; and progressively extend the techniques 
until we are able to exhibit a complete shadowing sequence 
with 33,732,599 elements. Several other applications and 
extensions are discussed in Section 3. These include the 
non-uniqueness of shadowing, and the use of shadowing 
as a measure of complexity in chaotic systems. Finally, in 
Section 4, we touch on some of the physical implications of 
the results. 

581.101!1-3 

2. CONSTRUCTION OF SHADOWING TRAJECTORIES 
FOR CEBYSEV MIXING SIMULATIONS 

2.1. Iterative Properties of Cebykv Polynomials 

All of the iterates of the chaotic logistic function 
fL : x, + 4x,( 1 - x,), 0 < x, < 1, are isomorphically mapped 
onto the iterates of the quadratic CebySev polynomial 
C2 : X, + xi - 2, Ix, 1 < 2, by the linear conjugacy transform 

C2=h+h-‘, (2.1) 

where h = 2( 1 - 2j), and j is the identity function. This shift 
is useful because the iterative properties of the CebySev 
polynomials are well known [7,9, 303. Furthermore, both 
the mathematical results as well as computer trials indicate 
that the CebySev iterations model several of the basic 
physical characteristics of chaotic systems: these include 
instability, ergodicity, mixing, fading memory, and the irre- 
versible dispersal of any set of positive measure throughout 
the domain of the mixing process [S, 10, 11,281. As a conse- 
quence the shadowing constructions can be developed 
directly for the CebySev mixing simulations. The conjugacy 
relation (2.1) may be extended further to include piecewise 
linear “tent” maps which also have the shadowing property 
[ 10, 31, 321. 

Although the CebySev polynomials C,(x) assume their 
simplest form in the interval 1x1 < 2, it is preferable to carry 
out the machine computations in the interval 1 d x < 2. This 
avoids some technical difficulties connected with iterations 
in the vicinity of the machine “zero” [ 111. Accordingly we 
insert h = 2 - j in (2.1); and throughout the rest of this work 
adopt 

C,(x) =4x2 - 12x + 10, 16x62, (2.2) 

as the standard representation for the quadratic Cebysev 
polynomial. The iterates of C2 can then be obtained from 
the recursion relation 

C;(X) =4rc;-1(x)12- 12~;-1(~) + 10, 

c;(x)=x,p> 1, XE [l, 21. 
(2.3) 

Due to the shift of the mixing interval the iteration pattern 
( 1.23 ) becomes more complicated, 

i(3 + [x - l]“‘) 
L 

x+4x2-12x+10+ . . ..x~[1.2]. 
7 

i(3 - [x- l]“‘) (2.4) 

However, the iterates are also linked by compact 
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trigonometric expressions. Specifically, the p th iterate of C, 
is given by 

Cp,(x)=~COS[mPcos-‘(2x-3)]+f, 

pa 1, m>o, XG Cl, 21, (2.5) 

where cos - ’ is evaluated on the principal branch. Similarly, 
if the set {x~-,,~)J’&~ denotes the m pre-images of the 
element xi of C,, then 

-I{(-1)‘(2x,-3)}+; +;; 1 
j=O, 1 , . . . . m- 1, m>2, x,E [l, 21. (2.6) 

In particular, if we represent the values of xi E [ 1, 2) by 

where b>a>O, (2.7a) 

then for C2, the two pre-images of xi are 

xi& 1,0 

and (2.7b) 

1 
xi- 1.1 =-cos 

2 

It is easy to check that these results are equivalent to (2.4). 
The four second-generation pre-images of xi are given by 

similar expressions: 

xi-z,0 

Xi- 

(2.8) 

Xi- 

Xi- 

These pre-image relations are the basic building blocks of 
the CebySev shadowing sequence constructions. 

The distribution of the numerical values of the CebySev 
iterates CL(x) is governed by the measure 

P,(Z)=; jL [(~-X)(X- l)]P”‘dx, zc [ 1, 21. (2.9) 

This means that if the interval Zis bounded by two points xr 
and xo, then after a total of N iterations, the inequality 

l<x,<C;(x)<x,<% p<N, (2.10a) 

will on the average be satisfied n(Z) times, where 

n(Z)=:{sin-‘(3-2x,)-sin1(3-2x,,)). (2.10b) 

As illustration, if xo - xr 2: 3 x 10-l’ and the interval is 
at the edge of the mixing region, e.g., xr = 1, then 
n(Z)/N N 3.5 x 10e9. On the other hand, if the interval is 
at the midpoint, xr = 1.5, then n(Z)/N N 2 x 1OW”. These 
disparities influence the error bounds of the shadowing 
sequences. 

The Cebysev spreading theorem gives a quantitative 
measure of the rate at which the mixing iterations 
approach the asymptotic statistical distribution (2.10b). If, 
as in (2.9), Z is a subinterval of [ 1, 21, then its image under 
iteration, C,(Z), is another interval with measure P,(C,(Z)). 
N-fold iterations result in an interval with measure 
P,(CE(Z)). The rate of growth of these intervals is then given 
by the 

CEBYSEV SPREADING THEOREM [9]. Suppose Zis a sub- 
interval of [ 1, 21 with positive measure, PJZ) > 0. Let 
P,(Cz(Z)) be the measure of the image of this interval after 
N iterations of the C?ebyiev polynomial C,. Then 

P,(C,NU)) = 1, whenever N>log~~~~z)). (2.11) 

In the special case of C,, and an interval of length 
)I( =xu- XL N 3 x lo-“? 2-55, located at xL = 1.5, 
Eq. (2.11) indicates that 57 iterations suffice to disperse Zover 
the entire mixing range [1, 21. Evidently the spreading 
theorem strengthens the analogies between mathematical and 
physical mixing processes. 

The spreading of intervals is also directly related to the 
instability of the CebySev iterations. Let { Cg(x,)} and 
{C;( y,)} denote two sequences of iterates whose initial 
points are included in an arbitrarily small interval, i.e., x0, 
y,eZ, and P,(Z) > 0. Mixing implies that for almost all 
choices of x0 and y,, and ma2, both {C~(x,)} and 
(C;( y,)} behave as independent identically distributed 
random variables with a common distribution function 
[33]. It can then be shown that the average asymptotic 
distance between iterates is of the order of the diameter 
of the mixing region [S, 251: 

(Ic~(xo)-c~(Yo)l),.,-~(1)~ m 2 2. (2.12) 
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Comparing (2.11) and (2.12) with the Liapunov criteria Each element of the two-cycle has two pre-images: one pre- 
(1.2a) and (1.2b), it is evident that the CebySev iterates are image is simply the other element of the cycle, while the 
dynamically unstable. The connection between these results second pre-image lies off the cycle and feeds into it. Each of 
and the Poincare recurrence theorem is discussed in detail in these “off cycle” pre-images is in turn the origin of an infinite 
Ref. [28]. ancestor tree-such as (1.23) or (2.4)-with a doubling of 

the number of pre-images at each additional generation 

2.2. Shadowing Trajectories for an 
Orbit with a Two-Cycle 

away from the cycle. Figure 1 shows the iterate structure 
around the two-cycle in pictorial and analytic form. 

Now let us check to what extent this structure can be 
It is convenient to begin the construction of the CebySev reproduced on a computer. The most elementary tests 

shadowing sequences with one of the simplest orbits of C,: consist of substituting the 18-digit number X,, into the 
namely, the set of all iterates that merge into a terminal two- expression 
cycle. The two elements of this two-cycle are the solutions of 
the iterative equation C,(lq E 4x2 - 12x + 10 (2.14) 

c;(x)=& XE [l, 21. (2.13a) and verifying that 

The trigonometric representations (2.7a) of these solutions C,(Xl”) = Xl,, 

are 

x,,,=;cos 
2n 3 

( > 

and, also, 
s + i z 1.65450849718747373 SE X,, 

(2.13b) c:(%“) = f,,, 

and where 

X +; r 1.09549150281252627 = X,,, c:(x) = 4[C,(X)]2- 12C,(X 
(2.13~) 

(2.15a) 

(2.15b) 

)+ 10. (2. 16) 

where evidently 

c2(xl”) = XID, C2(XlD) = xlU. 

The crucial distinction between (2.2), (2.3), and (2.14) 
(2.16) is that c,(X) now denotes the computer implementa- 

(2.13d) tion of the cebyko algorithms. In the present calculations 

FIG. 1. Exact two-cycle orbit of the quadratic CebySev polynomial. The diagram shows the trigonometric representations of the orbit elements 
surrounding the terminal loop. Some of these elements are also listed in column one of Table I. Corresponding points in Fig. 1 and Fig. 2, are labeled 
by the symbols, xl”, xzu, etc. 
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this means double precision floating point arithmetic on and 
a VAX 3600, where all algorithms are programmed in 
FORTRAN 77 for a DEC Ada compiler. C,(x) and C,(X) C*(X,,) = x1,. (2.19b) 
are related in precisely the same way as the logistic mapsf, 
and g, in Section 1.5. These relations are indeed satisfied; but the instability of the 

The numerical identities (2.15a) and (2.15b) are simple CebySev iterations raises the suspicion that there may be 
but not trivial: They happen to be satisfied for the C, two- additional parasitic pre-images. In order to check on this 
cycle, but already fail for one of the C, three-cycles, i.e., possibility we construct numerical “fans,” or intervals, 
the solutions of C:(X) = X. This lack of periodicity of the about each nominal pre-image value. For the pre-image xi” 
machine iterates of C,(X) is displayed in the following array: in (2.18a), this fan is given by the set of contiguous numbers 

.&OS $ ++ 1.811 74490092936677=.W, 
2 0 

C,(x,) =; cos f 
0 

+ 2 cx 1.388 739 533 021 842 80 

# 1.3 .428j= C&C,) 

Fan(x,,) = (1.654 508 497 187 473 73 f n.s}~~~ (2.20a) 

and similarly for x2,, in (2.18~) 

Fan(x,,) = { 1.345 491 502 812 526 27 + ns}zLy. (2.20b) 

The E corresponds to the machine’s limit of numerical 

c;(*,)+s 
0 

5 ++1.0495155660487904~ 
resolution, E = 2-55 N 2.78 x 10-l’; and therefore each fan 

(2.17) has a total width of w 1.8 x lOPi*. 

#l.o...9048=c;(x,) 
The search for parasitic pre-images then consists simply 

of computing all of the 128,000 forward images of the 

C:(x,)+os 
0 

7 ++.8--.3667J#l.R...366@=C;(Z,) 
fan sets, C,[Fan(x,,)] and C2[Fan(xzo)], and checking 
whether any of the results yields xi,,. For the first fan we 
find four additional pre-images, 

c;(x,)=~cos 
2n 3 

0 

C,( 1.654.. .7359) 
7 +,~1.8-..366~#1.8...364~=c~(X,). C,( 1.654 . . .7370) 

C,(XlU = 1.654.. .7373) = Xl, (2.21a) 

The underlined digits exhibit the progressive divergence C,( 1.654 . . .7375) 
between the iterates of C2 and C,. C,( 1.654.. .7378) 1 

Suppose now we return to the two-cycle and check 
further to see how much more of the pre-image structure and for the second, six additional pre-images, 
displayed in Fig. 1 can be simulated by the computer itera- 
tions. A simple starting point is the two-cycle element xib : C,(1.345...2611) 
nominally it has two pre-images, xin and xZD, given by C,(1.345...2619) 

xIII+os 
C,( 1.345 . . .2622) 

+ j N 1.654 508 497 187 473 73 = Xl, C,(l.345...2625) =XID. (2.21b) 

I 
(2.18a) 

C2(x2,, = 1.345 .2627) 

1 1 
C,( 1.345 . .2630) 

XlD=-COS ++.095491 50281252627-X,, C,( 1.345 . . .2636) 1 
2 . 

(2.18b) These results show that even on the first pre-image step 

1 
away from the two-cycle-i.e., xzD + x,b in Fig. l-there 

X*D = - cos are significant differences between the iterative structure of 
2 

++ 1.345491 50281252627=X,,. 
C, and its computer implementation C,. By similar 

(2.18~) methods it is possible to find six ancestors of X2,: Two of 
these correspond to the analytic pre-images x3iD and x3*,, 

On a computer we should therefore be able to verify the shown in Fig. 1, and the other four are parasitic pre-images 
numerical iterations clustered about x3iD and xs2b. 

A distinctive new feature appears in the “ancestor hunt” 
G(Xl”) = 21, (2.19a) for the next generation of pre-images, i.e., the elements 
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xdu, - xd4n in Fig. 1. Suppose that as usual the analytic is an obvious consequence of non-existence relations such as 
values (2.24a) and (2.25a). 

1 
Xd,D = - 

2 
cos + ; N 1.945 503 262 094 183 92 = X4lD 

(2.22a) 

X +; N 1.054 496 737 905 816 08 = X,,, 

(2.22b) 

If we now take the exact C2 iteration pattern in Fig. 1 as 
a template, it is possible to use the pre-image fan technique 
to map out the entire two-cycle orbit of the machine algo- 
rithm C,. The results are displayed in Fig. 2. Clearly, the 
two structures shown on Figs. 1 and 2 have only a super- 
licial resemblance. The open circles in Fig. 2 denote orphan 
points: they cluster about all of the tilled circles that denote 
points with pre-images. However, to avoid confusion in 
Fig. 2, we show the full complement of orphan points only 
for xID, xZD, x1”, and x,~“. The most striking charac- 
teristic of the computer two-cycle is that its pre-images 
capture so little of the exact analytic orbit: there are only 
100 interior or non-orphan points in Fig. 2; and the entire 
pattern is bounded by 702 orphan points. The longest run of 
iterates shared by Cz and C, is the 20 element sequence 
marked by the double circles in Figs. 1 and 2. Table I shows 

X + 2 N 1.726 995 249 869 773 40 = X,,, 

(2.22c) 

1 
X - ‘&$D = 2: 

2 cos + i 1.273 004 750 130 226 60 = X,,, 

(2.22d) 

are taken as the center points for the pre-image fan 
constructions: 

Fan(x,,,) = {xalD + n&}?=$‘, 

Fanh,,) = { x42D f nc} z?‘i’i 
Fanh,,) = (x43D f ns}42=0:, (2.23) 

Fan(x,,,) = {xd4b + ~E}F_~F. 

The computer trials then show that none of the 256,000 
forward images of any of the numbers in the four fan sets in 
(2.23) coincide with either X3iD or X3*,,. Specifically, 

where 

and 

where 

~dFanhD)l # GID P GCFanh2,)3, W4a) 

X3,D = 1.793 892 626 146 236 57 

(2.24b) 

~;,CFanhD)l ZX32D f C2[Fan(X44D)ly (2.25a) 

X3,, = 1.206 107 373 853 763 43 

(2.25b) 

In this sense it is possible to verify that there are computer 
numbers such as x3,D and 232, that have no pre-images 
whatsoever with respect to the machine-implemented C, 
algorithm-informally speaking, they are “orphan points.” 
The finite length of all the iterative sequences on a computer 

FIG. 2. Computer generated two-cycle orbit of the quadratic CebySev 
polynomial. The open circles indicate orphan points; the filled circles 
denote interior points: The double circles in Fig. 1 and Fig. 2 mark 
the shadovied trajectory shown in Table I. The computer orbit is 
conspicuously asymmetric. 
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TABLE I 

Shadowing on the Principal Branch of the c,(X) Two-Cycle 

Label of point on Fig. 2 C,(x) c&q 6 x IO” 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

X54U 

X42U 

X3lU 

XXJ 

XIU 

+ z z 1.438 18573082493203 

1.01528401549459105 

1 - cos 0 ; 
2 

+ ; x 1.9755282581475762 

1 - cos 2 ++ 1.90450849718747373 

1 - cos 0 $ 
2 

+ ; e 1.65450849718747373 

1.71 . ..539 

1.18...976 

1.38.,.104 

1.04...65CJ 

1.81 .,.3lJ 

1.04 ,776 

1.83 ..,399 

1.93 ‘.’ 146 

1.77...83J 

1.29,,.9@ 

1.16...9@ 

1.46 ,759 

1.97...6t3J 

3 

0 

6 

3 

8 

13 

0 

3 

8 

3 

0 

5 

8 
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that the numerical values of the computer iterates differ 
from the exact trajectory by at most 1.3 x 10-16, and there- 
fore this qualifies as our first example of a “shadowing 
trajectory”! 

A numerical inventory of all of the 802 elements of the 
computer generated C, two-cycle shows that none of them 
has a “wild” or arbitrary value. The maximum difference 
between corresponding sets of elements of the approximate 
(C,) and exact (C,) two-cycle orbits is less than lo-“. In 
this respect the computer two-cycle orbit in Fig. 2 is 
precisely “shadowed” by a fragment of the exact orbit in 
Fig. 1. However, this numerical correspondence does not 
imply that the approximate iteration pattern in Fig. 2 is a 
template for the exact orbit in Fig. 1. In fact, the gap 
between numerical and structural information is even more 
conspicuous for other “short cycle” CebySev orbits. 

Let N(m, 1) denote the number of cycles of length 1 of 
the mth order CebySev polynomial C,. Then evidently 
N(m, 1) = m, since the mth degree CebySev polynomial has 
m fixed points, or one-cycles. The general result is [34] 

N(m,l)=fxp(d)m”‘, m > 2, (2.26) 
rl 

where p(d) is the Mijbius function, and d is the set of 
divisors of 1. (For example, if I= 6, d --* 1, 2, 3, 6; etc.). 
Table II lists some numerical values of N(m, 1). The results 
of a computer search for some of these short cycles are sum- 
marized in Table III(a). As usual, c, represents the com- 
puter implementation of the CebySev recursion algorithms. 
Some of the entries in the column under c, in Table III(a) 
are already familiar: For I= 1, the entry “2” corresponds to 
the two fixed points at 2 and 1.25; for I= 2, the entry “1” 
denotes the computer two-cycle found earlier in (2.15a) and 
(2.15b); for I= 3, the entry “1” corresponds to the three- 
cycle 

1 
- cos 
2 

which can be simulated by the computer, whereas we have 
already seen in (2.17) that the other three-cycle cannot 

TABLE II 

Number of Cycles of Length I of the Cebykv Polynomial C,,,: 
N(m, I), cf. (2.26) 

Order of polynomial m 
Cycle length I 2 3 4 5 6 

1 2 3 4 5 6 
2 1 3 6 10 15 
3 2 8 18 40 IO 
4 3 18 60 150 315 
5 6 48 198 624 1554 
6 9 116 670 2580 7135 

be simulated. The overall trend of the results collected in 
Table III(a) indicates that the computer’s floating point lat- 
tice is not suited to approximating the iterative behavior of 
the short cycle CebySev orbits. This mismatch is also evident 
in the computer generated orbit statistics summarized in 
Table III(b). The entries in the second column of 
Table III(b) show that only negligible fragments of the 
exact C,-C, short cycle orbits are reproduced by the 
computer simulations. 

The large value of the ratio ((orphan points)/(interior 
points)) - 7, shows that on the average the tendency to 
have very few or no pre-images (e.g., (2.24a) and (2.25a)) 
predominates over the occurrence of many pre-images (e.g., 
(2.21 a) and (2,21 b)). Extensive computer explorations of 
the orbits of CebySev polynomial recursions confirm that 
this is a generally valid result [ 111. As a consequence, if 
numbers are selected with uniform probability from the set 
of 255 computer numbers available in the interval [ 1, 21, 
then 87% of the chosen numbers will be orphan or initial 
points of the CebySev mixing simulations. All of the interior 
elements that usually appear in pseudo-random number 
generators, cryptographic applications, or in the simulation 
of chaotic systems comprise only a small fraction of the total 
pool of accessible numbers. 

TABLE III(a) 

Cycles of Length I Found in a Search by a VAX 3600 in Double 
Precision 

G c, c, c, G G c, c’s 

Cycle length Found Found Found Found 
I N(2J) byVAX N(3,1) byVAX N(4J) byVAx N(5J) byVM 

I 2 2 3 3 4 3 5 5 
2 I 1 3 2 6 0 10 1 
3 2 1 8 I 18 0 40 0 
4 3 0 18 0 60 0 150 1 
5 6 0 48 0 198 I 624 0 
6 9 0 116 0 670 0 2580 -- 

TABLE III(b) 

Computer Generated CebySev Orbits Terminating in Short Cycles 

Total Number Number Orphan points Length 
no. of of of of 

elements orphan interior Interior longest 
Orbit in orbit points points points trajectory 

Cz : 2-cycle 802 702 100 7 20 
C,: 3-cycle 64 56 8 7 4 
C, : 2-cycle 21 18 3 6 3 
C,: 2-cycle 16 14 2 I 2 
Cz : 3-cycle 261 234 33 7.09 11 
Cd: 5-cycle 164 140 24 5.83 I 
C, : 2-cycle 1890 1651 239 6.91 30 
C5 : 4-cycle 52 45 7 6.43 3 
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2.3. Shadowing Trajectories Emerging 
from a Fixed Point 

The first six generations of pre-images of the C,(x) fixed 
point at x = 2 are shown in Fig. 3. In particular, as indicated 
in (2.4), the point 1 has the unique pre-image 2. However, 
because of the peaking of the CebySev measure (2.10b) at 
both ends of the mixing interval [ 1, 21, the computer algo- 
rithm C, has a strikingly different pre-image pattern. The 
fan technique introduced in (2.20a) and (2.20b) can be used 
to verify that the end point 1 has more than lo8 computer 
pre-images in the interval Cl.499 999 992 320 117 32, 
1.500 000 007 679 882 671. About 98% of these parasitic 
pre-images have short ancestral lines not exceeding 60 
generations. One of the longest of these “short stubs” is 
shown in Table IV: the corresponding pre-image sequence 
in Fig. 3 is marked by an asterisk. The close correspondence 
between the exact (C,) and computer generated values (c,) 
shows that this is another shadowing pair analogous to 
the trajectories displayed in Table 1. In this example the 
maximum numerical divergence is 6 - 6.22 x 10P15. The 
shadowing length is limited to 57 steps because C,(X) - 
1.947. .. 897 is one of the four orphan points that is the 
source of the computer trajectory. 

The dagger in Fig. 3 marks the beginning of another 

FIG. 3. Pre-images of the fixed point “2.” The asterisk indicate the 
trajectory of the 57-element shadowing sequence in Table IV. The dagger 
marks the beginning of another shadowing sequence with 1,331,038 
iterates. 

shadowing sequence that follows a computer generated 
trajectory for 1, 331, 038 iterations back to its inception 
at the orphan point 1.014 214 634 895 324 71. Such long 
shadowing runs require an extension of the pre-image con- 
struction methods. It is obvious from (2.7a) and (2.7b) that 
if a particular element is represented by cos(a~/b), then its 
eightieth generation ancestors will include pre-images 
proportional to cos(A~/B), where A and B are both large 
numbers of the order of 2*‘. It is just barely feasible to 
evaluate such trigonometric expressions with multiple preci- 
sion routines without encountering arithmetic overflow. But 
this is certainly not possible in pre-image searches extending 
over hundreds of thousands of generations. 

In the Appendix we outline a simple procedure that 
avoids computer overflow. In essence: (1) the ratio A/B is 
simplified by removing powers of ten that occur as common 
factors; and (2) only the most significant figures in the ratio 
are retained for quadruple precision computations. It can 
then be shown that these approximations introduce errors 
that are bounded by N x 10P3’, where N- 0( 109) is 
the maximum length of the computer’s double precision 
CebySev iterations. By combining these approximations 
with the pre-image representation (2.27b), it becomes 
feasible to construct shadowing sequences that are not over- 
whelmed by computer roundoff even after millions of terms. 

If, for clarity, we distinguish CebySev elements con- 
structed by the methods of the Appendix by the notation 
zi2, then the entire shadowing procedure can be sum- 
marized in terms of the following array: 

(i) Exact CebySev iterations 

x0 -+ &(x0) + c:(x,) + ‘. . + XN. (2.28) 

(ii) CebySev iterations generated by computer recur- 
sions 

x0 --t C,(X,) -+ c;(x,) + . . . -+x’,. (2.29) 

(iii) CebySev pre-images computed by analytic and 
approximate means: each pre-image is selected by retrodic- 
tion to achieve the closest possible match to the iteration 
sequence in (2.29) 

yo +- C2(jo) 4- . . . + ~2(YN--)+ZI*(yN~,)=yN--~. 
(2.30) 

Clearly these sequences are the analogues of the basic 
shadowing triad of the Anosov-Bowen theory (Section 1.4): 
The analytic CebySev iterates C2p(xo) correspond to the 
exact Anosov trajectories {x,1; the computer iterates 
C,P(X,) mimic the perturbed 6 pseudo-trajectories {xi}; 
and the pre-images z’,(Y,) are surrogates for the exact 
shadowing sequences { y,}. 
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TABLE IV 

Trajectory Emerging from a Fixed Point 

39 

Number of generations 
from fixed point C,(x) 

57 

56 

55 

54 

53 

52 

51 

50 

49 

10561281022968443n ++ 1.9479253110101689~ 

10561281022968443n 
+; z 1.80254835847464132 

10561281022968443n + ; z 1.36614203686280034 

7453117486513541~ 
++ l.Ol16718l7l809596l 

1554081768227451~ ++ 1.73386012878824514 

155408116822745ln ++ 1.21876223934741841 

697718045457797n +;z 1.31637871206751502 

1.947,,.891 3 

1.802 134 1 

1.366.,.034 0 

1.011 ,,.961 0 

1.133”‘514 0 

1.218...845 4 

1.316...5OQ 7 

562949953421312 +;- I.13486710952793814 

134768092036485~ ++ 1.5332881108179309J 

+; x 1.00376023270064~ 

1.134,,.812 2 

1.533 082 8 

1.003.~~496 4 

+; w 1.985015626597272OCJ 1.985 ,204 4 

1 5x 
- cos 0 

3 
2 32 + z 1.940960632 17411751 2 

1 5rr -cos 0 G 3 
2 

+,xl.7777851165098OllJ 

1 
- cos 2 + ; x 1.30865828381745~ 

+ ; z 1.14644660940672~ 

1.940 I@ I8 

1.717,..175 64 

1.308.,.652 141 

1.146,..4&5 219 

+; = I .5OMlo000000000~ 1.500 622 

1.000~~~000 

2.000 000 

622 

;cos(x)+;z 1 .oOOOOooOOOOOOOoOo 

$ cos (0) +; z 2.00000000000000000 
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Table V exhibits the trend in shadowing errors that 
results when the long ( - 1.33 x 106) c, iteration trajectory 
is tracked by a c, pre-image sequence. The new feature in 
this situation is the large error jump (6 - 4 x lo-‘) that 
occurs at the second pre-image generation. As indicated in 
the table, this shadowing error can be reduced by a factor of 
10’ through appropriate choices of pre-images in the next 
26 generations. This rapid gain in precision is basically due 
to the fact that the c, pre-image sequences satisfy a reversed 
version of the CebySev spreading theorem (2.11). If, for 
example, the particular element C, -+ 1.295 ... , in the 29th 
generation in Table V, is chosen as a “target” value, then 
(2.11) implies that it is likely that one of the 2*‘, 
29-generation pre-image sequences emerging from the fixed 
point 2 will “hit” close to this target. Indeed, Table V shows 
that the corresponding shadowing error is only 6 x lo- “. 

However, the confluence of the iteration (c,) and 
shadowing (c,) trajectories displayed in Table V is only 

TABLE V 

Confluence of a Long Shadowing Trajectory Emerging from a 
Fixed Point 

Number of 
generations 
from fixed 

29 
28 

27 
26 

25 
24 
23 

22 
21 
20 

19 

18 
17 
16 
15 

14 
13 
12 

11 
10 
9 
8 

6 
5 
4 

2 

0 

I.29543250839522612 1.29543250839522618 
1.1673914344858752 1.167391434485875&5 

1.442513831413453@ I.44251383141345368 
1.0132186383150432J 1.0132186383150433J 

I.94782437633544281 1.947824376335442s 
1.8021866881609132J 1.802186688160912ZJ 
1.36526717800664288 1.36526717800664182 
1.07261173328917~ 1.07261173328917~ 
1.73064292208833792 1.73064292208833@ 
1.21278463003778847 1.2127846300377~ 
1.32997067497012011 1.32997067497015187 
1.11563988548046611 1.1156398854804m 
1.59093079053387676 1.590930790534oo94o 
1.03307363466846303 1.03307363466855959 
1.87208092256687975 1.87208092256651906 
I.55377685175288138 1.55377685175180782 
1.011567799137~ 1.01156779913734365 
1.95426405935634806 I.95426405935815306 
1.82542334249m I.82542334249819047 
1.42360140735370111 1.42360140737077828 
1.02334697983334033 1.02334697982290310 
1.90879240653599225 1.90879240657579186 
1.66844492656595178 1.66844492669611003 
1.11349477314323564 1.11349477331863153 
1.59754516155039550 1.59754516100806412 
1.03806023416757109 1.03806023374435663 
1.85355338902927702 1.85355339059327376 
1.49999999557634922 1.50000000000000000 
I.00000000000000000 1.00000000000000000 
2.00000000000000000 2.00000000000000000 

d x 10” 

6 
6 

12 
8 

25 
92 
206 

219 
747 

1.377 

3.176 
4,313 
13,264 

9,656 
36,069 
107,356 

46,194 
180,500 
655,962 

1,707,717 
1,043,723 
3,979,961 

13,015,825 
17,539,589 
54,233,138 

42,321,446 
156,399,674 
442,365,078 

0 
0 

part of a more complicated pattern. Table VI shows that 
large shadowing errors of the order of 10 ~ ‘* tend to recur 
in spikes at iteration intervals of roughly lo5 steps. In every 
case, the C, and c, elements agree exactly, in double preci- 
sion, when they approach 1, but the shadowing error jumps 

TABLE VI 

Location of Large Jumps in the Shadowing Distance: 1.33 x lo6 
Iterations Terminating at 2 

Number of 
generations 
from fixed 

point 6=IC,-C*I 

1,298,510 1.50000916052302635 1.57 x lo-‘2 
I ,298,509 1.00000000033566061 0 

1,295,715 1.50000864948046830 1.33 x 10-12 
1,295,774 1.00000000029925395 0 

1,161,546 1.49999875722896703 2.78 x lo-” 
1,161,545 1.00000000000617795 0 

1,07 1,949 1.22221480561459564 1.17 x low’* 
1,071,948 1.30865845687894766 2.60 x 1OW” 
1,071,947 1.50000074928158100 1.13 x lo-‘] 
1,071,946 1.00000000000224576 0 

1,000,427 1.81719662622612499 1.06 x lo-‘* 
I ,000,426 1.40245479875694423 2.69 x lo-‘* 
I ,000,425 1.03806026514219285 2.10 x low’* 
1,000,424 1.85355327456200469 7.74x lo-‘* 
1,000,423 1.49999967181406513 2.19 x lo-” 
I ,000,422 1.00000000000043077 0 

965,07 1 1.50000537205867124 1.11 x 10-12 
965,070 1.00000000011543611 0 

938,447 1.85355385284645369 2.14 x IO-‘* 
938,446 1.50000130745028737 6.07 x lo-l2 
938,445 I .OOOOOOOOUOO683764 0 

759,772 1.49998970354710015 1.20 x lo-‘* 
759,771 1.00000000042406767 0 

638,119 1.499995742225 123 1 I 2.76 x lo-‘* 
638,118 1.0000000000725 1466 0 

356,629 1.49999038799004736 2.17 x lo-‘* 
356,628 1.00000000010774093 0 

288,949 1.49999038799004736 1.52 x IO-‘* 
288,948 1.00000000036956282 0 

4 1.03806023416757109 4.23 x IO-” 
3 1.85355338902927702 1.56x 1O-9 
2 1.49999999557634922 4.42 x 1O-9 
1 1 .ooooooooooooooooo 0 
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TABLE VII 

Frequency Distribution of Shadowing Errors 

Shadowing error Number of differences (C, - ci2 1 
intervals falling into interval 

1 

10-s 
0 

4 
L 

lOmy 
4 

10-‘O 

lo-” 

lo-‘* 

10-l’ 

5 

20 

170 

1843 
lo-l4 

lo-l5 

lo-l6 

to-” 

“0” 

18,338 

206,548 

772,226 

331,842 

to lo- ‘* at the next pre-image step in the vicinity of 1.5. This 
intermittency is due to the non-uniform Cebygev measure 
(2.lOb)-or, “density of states”-which has a maximum at 
1 and a minimum at 1.5. Iterations that map values of x near 
1.5 onto points near 1 evidently increase the density of 
states; and this enormous compression of images is difficult 
to simulate with computers that are restricted to shullling 
numbers over nearly uniform binary lattices [29]. The 
overall distribution of shadowing errors is summarized in 
Table VII. The maximum deviation is 4 x 10P9. About 
99.8 % of all the computer elements in this trajectory differ 
from their analytic counterparts by less then lo- 14. As 
indicated by the last entry in the table, 331,842, or 25 %, of 
the computer iterates are shadowed without any discernible 
error in double precision. 

2.4. A Shadowing Trajectory with 33,732,599 Iterates 

Up to this point shadowing trajectories have been con- 
structed starting from well-defined initial elements such as 
the two members of the quadratic CebySev two-cycle shown 

30 x 106 

20 x 106 

FIG. 4. Dominant comfiuter orbit of the quadratic (SebySev polynomial. The vertical scale indicates the number of iterations required to reach the 
terminal loop. The loop itself contains 10,343,527 distinct elements. The 3.3 x 10’ element shadowing sequence of Section 2.4 begins at Zb and ends at 
.&. The diagram indicates the principal “flow” properties of the trajectories, even though it is only a skeleton representation of the actual computer orbit. 
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in Fig. 1. This analytic specification appears to be necessary 
because the basic pre-image link (2.7a) + (2.7b), or 

COS(~7r)+cos(~7c), etc. (2.31) 

requires specific input values for the constants a and b so 
that successive shadowing terms can be computed. 
However, the rapid confluence of the machine iterates C, 
and the shadowing sequence c, displayed in Table V 
suggests that the actual starting point of the shadowing 
construction is irrelevant. Any element of the form 

(2.32) 

with arbitrary initial values satisfying b, 2 a, > 0, is suitable 
as the first term of a shadowing sequence. Let us illustrate 
this confluence approach with a specific example. 

Figure 4 shows several of the longest iteration sequences 
located by computer explorations of the C, orbit structure. 
All of these trajectories are part of a dominant orbit that 
contains approximately 67% of all the computer numbers 
available in the interval (1,2)-in VAX double precision 
this is equivalent to about 2.4 x 1016 distinct elements. 
Dominant orbits are general features of pseudo-random 
mappings of finite sets [ 10, 11, 353. The fact that most of 
the trajectories merge into the terminal iterative loop 

TABLE VIII 

Shadowing Precision for a Trajectory with 33, 732, 599 Iterates 

Iterate 
number 

33,132,536 1.909 895 124 441 912 89 0 1.909.. 1289 62 
33,732,531 1.672 056 052 165 00~~ 8 x 10-l’ 1.672.. .Om 61 
33,132,538 1.118413 14034642769 9x 10-i’ 1.118...2718 60 

c* 161 
1.574 544 548 988 342 21 2 x lo-” 

1.022 227 559 135 50145 0 
1.913066020998483 11 0 
1.682 494 150 814077 16 5 x low” 

Shadowing 
steps 

1.574 .422 33,732,599 
1.022..‘0145 33,732,598 
1.913...8311 33,732,597 
1.682...7711 33,732,596 

33,731,596 1.596 282 62; 771919 54 0.04;2 1.%&S.. ,a 4 

33,732,597 1.037 081 377 642 663 95 0.0275... l.OO!jO!j...’ 3 

33,732,598 1.857 174 603 700 855 63 0.1048... Km...“ 2 
33,732,599 1.510 294 790 115 453 09 0.3433 1.853. r 1 

’ This element is part of a set of 27 orphan points. 
b $OS( 15n/32) + 3. 
’ fcos( 157c/16) + 1. 
d ~cos(7q3) + 4. 
’ Arbitrary start of shadowing sequence: fcos(?r/rl) + 3. 

through a few dominant entry points is also a consequence 
of general statistical arguments [ 1 l-131. 

In Fig. 4, the orphan point X, = 1.574 544 548 988 342 31 
marks the beginning of a sequence of 33 732 599 
computer iterates of C, that leads to the element X,= 
1.510 294 790 115 453 09. The dominant entry point to the 
loop-indicated by Xl in Fig. &is only two iterative steps 
removed at X, = c:(X,) = 1.998 304 995 613 000 57; but it is 
slightly more convenient to start the shadowing at x,. Let us 
begin by listing the approximate values of X, and its two 
preceding iterates: 

x p-z N 1.037 

x Ed 1 2: 1.857 

2, N 1.510. 

(2.33a) 

We then choose a simple but arbitrary initial value for 
(2.32), say, $0~ (n/4) + 4, and list its ancestors: 

Reject Accept 

\ T 
+;- 1.962=y,p, 

1.854+0s $ ++yN. 
0 

(2.33b) 

The shadowing recipe indicated in (2.33b) then simply 
amounts to selecting successive ancestor branches whose 
values most closely resemble the corresponding iterates in 
(2.33a). The “accept-reject” choices indicated in (2.33b) 
show that only two retrodictions are already sufficient to 
reduce the initial divergence from IX, - jj, 1 N 0.343, by a 
factor of 10, to IX,-, - yN-* 1 N 0.027. These selective 
improvements can obviously be programmed for computers 
by means of the c, shadowing algorithms in the Appendix. 
The construction of the shadowing sequence (2.33b) can 
therefore be continued automatically from the arbitrary 
starting point yN all the way back to the beginning of 
the computer iterations at X,,. Table VIII displays some 
excerpts from these results-supplementing and extending 
the data given in Eqs. (2.33a) and (2.33b). The observed 
confluence of the c, and c, sequences after approximately 
60 shadowing steps is consistent with the CebySev spreading 
estimate (2.11), adapted to VAX double precision. 

If shadowing sequences can be constructed starting from 
arbitrary initial points, then evidently they cannot be 
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TABLE IX 

Confluence of Multiple Shadowing Sequences 

Pre-image 
choice 

s 

L 

L 

L 

s 

S 

L 

L 

L 

S 

L 

Shadowing sequence 
#l VI 

Shadowing sequence 
#2 

+;z 1.00270 0.00003 1.00267 

1.83801 

1.45702 

1.00738 

1.97066 

1.88609 

++1.53494 0.06134 1.59628 

1.03708 

1.85717 

1.51029 

0.0000 1 1.00266 = ; cos 

0.00008 1.98939+0s 

0.00031 195802+os 

0.00111 1.83912+0s 

0.00297 1.45999+0s 

0.00098 1.00640 Ez; cos 

0.00390 1.97456+0s 

1 
0.01475 1.90084~jcos 

0.04640 1.64268 +os 

0.04436 
I 

1.08144~~~0~ 

0 Double precision values of C, are listed in column two of Table VIII. 

unique. This non-uniqueness is well known in the Anosov- 
Bowen shadowing theory [l, 141, but it is instructive to 
see explicitly how multiple confluences arise in the CebySev 
computer simulations. Table IX illustrates this behavior 
for two additional shadowing sequences that follow the 
33,132,599 iterates of the c2 trajectory in Fig. 4. The new 
starting points, cos($) and cos($$r,), clearly generate 
ancestral sequences that are analytically distinct from the 
initial shadowing set in (2.33b). Yet it is apparent from 
the numerical trends in Table IX that both of the new 
shadowing sequences converge rapidly towards the 
computer iterates. Extensive additional data concerning 
multiple computer shadowing is summarized in Ref. [ 111. 

43 

Pre-image 
choice 

S 

L 

L 

L 

S 

S 

L 

L 

L 

S 

L 

- 

3. EXTENSIONS 

3.1. Multiple Shadowing and Numerical Order 

The non-uniqueness of the shadowing constructions leads 
to several interesting illustrations of the “folk theorem” that 
the inverses of sensitive functions are insensitive functions. 
In particular, the chaotic CebySev mappings can be reverted 
to yield computer algorithms whose output is strictly inde- 
pendent of the input! The construction of such “ultra stable” 
functions is based on two observations: (1) If the multiple 
shadowing trials in Table IX are extended to 100 arbitrary 
starts, then in every case complete confluence-within 
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the ultimate precision of the computer’s floating point 
lattice-is attained with 65 pre-image generations. (2) In all 
cases, irrespective of the starting points, the shadowing 
sequences are characterized by identical ancestor-branch 
choices at every pre-image step. This invariance is evident 
from the two matching “ancestor choice” columns in 
Table IX. Every “L” entry signifies the choice of the larger 
pre-image 

x-+(3+ [x-1]“2) WI (3.la) 

and every “S” entry corresponds to the choice of the smaller 
pre-image 

x+4(3- [x- 11”‘) (S). (3.lb) 

As before, all of these choices follow from the basic 
shadowing rule that at every step the ancestor that 
minimizes the difference 1 C2 - c, 1 is selected. 

The net result of these retrodictive selections is to supply 
the missing information that is needed to construct the time 
reversed trajectories, or equivalently, to “run the film 
backwards.” In this respect, both of the mappings 

and 

(3.2a) 

sc,‘: x -+(3-[x-1]“2) (3.2b) 

define inverses of the quadratic CebySev polynomial C2. Of 
course, the domains and ranges of these functions differ, but 
it is precisely this mismatch that is essential for ultra- 
stability. The confluence of the shadowing sequences in 
Tables VIII and IX can then be formally expressed by the 
ultra-stable algorithm 

1.909 895 124 441 912 89 = U(J&,), (3.3a) 

where U is a unique composite of 61 inverse mappings 
selected from (3.2a) and (3.2b), viz., 

The argument Yinp in (3.3a) may be identified with the 
starting point 1.854 . . . , as in (2.33b); or with 1.923 ... , or 
1.161 . . . . as in the bottom row of Table IX; or we may 
insert practically any other double precision computer 
number in the interval (1,2). Computer trials indicate that 
if (3.3b) is extended to 65 mappings, then it is likely that 
(3.3a) is valid for all double precision Yinp E (1, 2). 

Since 55 binary bits are sufficient to specify the 18-digit 
output in (3.3a) and 61 binary bits are encoded in the 
sequence of L, L, . . . . L, S, L selections in (3.3b), it is clear 

that the map U does not compress information. This 
redundancy makes it plausible that the L, . . . . S, L sequence 
in (3.3b) can in fact be adjusted so that the resultant 
U-algorithm can yield any pre-assigned output value for all 
input values of j&, in (1,2). This option is also confirmed 
by computer trials [ 111. 

The contrast between the instability of the forward 
images of C2 and the stability of the pre-image chain U can 
be summarized concisely in terms of finite differences: If any 
double precision number J? is shifted within the interval 
(1,2) by increments of the machine E - 2 -“, then the 
corresponding variation in the forward-or “chaos”- 
direction is scaled by 

(3.4a) 

whereas in the inverse-or “ordered”--direction the 
changes are negligible, 

(3.4b) 

3.2. &by&v Shadowing Hierarchies: 
Measures of Complexity 

The mixing transformations generated by the iteration of 
the CebySev polynomials C, (m 2 2) have entropy rates 
and Liapunov characteristics proportional to In m, and 
can therefore simulate many statistical features of dis- 
ordered. systems such as dispersal and ergodicity [S, 313. 
Nevertheless, quadratic transformations such as the logistic 
map (l.l), or its Cebygev conjugate (2.2), are too rudimen- 
tary to qualify as generators of “fully developed chaos” 
[36, 371 because they have too many short-range correla- 
tions. It is easy to verify that strings of numbers resulting 
from the iteration of (1.1) fail practically all of the pseudo- 
random number generator tests of the Knuth type [38-40]. 
One obvious way of minimizing these correlations is to 
exploit the greater complexity of the higher order CebySev 
polynomials. All of the useful asymptotic properties of the 
mixing iterations are then preserved, but the higher entropy 
rates attenuate the short-range correlations. For example, a 
pseudo-random number generator utilizing C3,25 passes 
all of the correlation tests considered in [39,40], as 
well as a number of more sophisticated cryptographic 
diagnostics [ 11, 411. 

Since shadowing is related to the mixing entropy through 
the CebySev spreading theorem (2.1 I), the shadowing of 
two CebySev polynomials with differing degrees provides 
another measure of their relative complexity. This aspect of 
shadowing is illustrated in Table X. The column headed 
C,, lists excerpts from a series of 249 computer generated 
iterates of a 500-degree CebySev polynomial, beginning with 
the element 1.799 417 . . . , and ending at 1.938 795 ... . 
The column headed c, shows a shadowing sequence con- 
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TABLE X 

Shadowing of esoo by e2 

Iteration Shadowing 
steps c 500 VI G steps 

1 1.799 417 0.453 926 1.645 509 249 
2 1.091 294 0.114 812 1.206 107 248 

243 1.35; 003 0.056 365 1.298 638 i 
244 1.545 783 0.227 456 1.773 239 6 
245 1.185 004 0.124 674 1.060 329 5 

246 1.820 444 0.197 633 1.622 810 4 
247 1.122 300 0.016 892 1.105 408 3 
248 1.615 889 0.046 443 1.662 333 2 

249 1.938 795 0.031 876 1.906 919 1 

strutted from successive choices of the inverse functions 
(3.2a) and (3.2b): As indicated in the table, the shadowing 
is started with the element 1.906 919 ...; and successive 
pre-images are picked according to the usual rule that the 
difference 1 C,, - c, 1 is to be minimized. It is evident that 
in contrast to the shadowing confluence displayed in 
Tables VIII and IX-where both the iteration trajectory 
and the shadowing sequences are generated by a quadratic 
CebySev polynomial-the c, sequence in Table X cannot 
follow the fluctuations of the c,, iterates. The 
average deviation of the last live shadowing steps, 
(14)x-249- 0.169, is actually greater than the average 
initial deviation, ( 16 I) ,~ 5 - 0.083; and further computer 
trials confirm that under these circumstances there is no 
tendency for a confluence between c,, and cz. On the 
other hand, if the r6les of Csoo and C2 are interchanged, 
there is no dificulty in constructing shadowing sequences. 
As one might intuitively expect, the pre-images of the more 
complex Csoa function can easily follow the fluctuations of 
the simpler C, function. 

The shadowing of function pairs is a sensitive measure of 
relative complexity because it relies on the extended inter- 
action of two distinct processes-iteration and pre-image 
retrodiction. This synergism yields more information con- 
cerning the complexity of pseudo-random systems than 
some conventional statistical indices. For example, the 
average fluctuation of successive iterates of C, is given by 
the agitation [S]: 

d(m)-;imx (lC~+‘(x)-C~(~)l)..~,.~,. (3.5) 

Computer trials show that this average fluctuation is 
essentially independent of m; e.g. d(2) N 0.414, and 
4(500) N 0.404. This simply means that both the C2 and 
C 5oo iterate fluctuations do well in simulating random 
behavior. However, the inherent differences in complexity of 
these functions are not reflected in the values of d(m). 

Finally we note that the rate of confluence in shadowing, 
and the asymptotic average of the shadowing distance (61 
provide additional measures of the relative complexity of 
pairs of pseudo-random functions [ 111. 

3.3. Iteration and Shadowing Sequences 
for Random Processes 

Since the iteration of cebygev polynomials generates 
strings of pseudo-random numbers that can be ranked in 
order of increasing complexity by shadowing, it is plausible 
to match CebySev iterates with strings of numbers generated 
by other means as a gauge of their complexity. An 
interesting special case is the matching of sets of numbers 
derived from nominally random processes such as lottery 
drawings or sequences of radiative transitions in a single 
atom [41]. The shadowing process in these situations yields 
results equivalent to the Kolmogorov-Chaitin criterion that 
the information content of a string of random numbers can- 
not be compressed [42]. This is illustrated by the simple 
sequence 

iteration 

1.52 1.52 1.64 1.64 1.35 1.13 1.35 (3.6) 

shadowing 

which represents the radiative lifetimes of seven successive 
decays in a single trapped mercury ion. The two digit 
accuracy of these numbers reflects the current state of 
experimental technique. 

Suppose first we were to try to reproduce this string of 
numbers by six iterations of a CebySev polynomial in double 
precision, matching only the first three digits. Specifically, 
this means using the initial three experimental digits, 1.52, 
as an input, and treating the remaining 15 decimal digits 
of the double precision representation as adjustable 
parameters, or “hidden variables.” Despite this tremendous 
latitude in the choice of the starting point-1015 possibilities 
in all!-it can be shown that even as complex a pseudo- 
random function as C,,, cannot reproduce the simple 
sequence in (3.6) by iteration. The underlying reason for this 
mismatch is evident if (3.6) is rewritten in the form of an 
iterative array: 

1.52 1.52 1.64 1.64 1.35 1.13 1.35 (3.7a) 

(3.7c) 

Clearly, if the numbers in (3.7a) really did correspond to 
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iterates of Csoo, then (3.7b) and (3.7~) show that successive 
pairs, such as (X,,, X,), (X2, X3), (X4, X5), etc., would denote 
points on the graph of C,,. The fact that the series (3.7a) 
cannot be approximated by iterates of C,, simply means 
that this geometric criterion is not satisfied, or, equivalently, 
that C,, fails the serial correlation test [38]. 

Of course, the series in (3.6) can be reproduced by 
resorting to still more complicated iterations. For instance, 
if the graph of C,,, is plotted in the unit square, and this 
is overlaid with a uniform 100 x 100 square grid, then the 
10,000 oscillations of C,, are sufftciently line so that the 
graph will intersect every individual square of the grid. 
Consequently, every possible pair of two-digit numbers will 
approximate some point on the graph of C1oo,,,,; or, at this 
level of precision, C,,, will pass the serial correlation test 
and simulate (3.6). 

The Kolmogorov-Chaitin randomness criteria enter if we 
try to simulate the experimental series (3.6) by shadowing 
rather than iteration. In this case we take the last entry, 1.35, 
as the starting point, and construct shadowing sequences 
following the methods *outlined in Section 2.4 and the 
Appendix. In particular, if we elect to shadow with C,,, 
then all seven numbers in (3.6) can easily be reproduced by 
analytical expressions: This is simply due to the fact that 
every Csoo iterate has 500 distinct pre-images distributed 
throughout the interval [l, 21 with the CebySev measure 
(2.9); and therefore the number 1.13-the entry preceding 
1.35 in (3.6)-is sure to be approximated to better than 
1% precision by one of the pre-images of 1.35. Similar 
arguments apply to all the remaining entries in (3.6); and in 
this sense it is feasible to shadow the random experimental 
results in (3.6) by deterministic algorithms. 

Since shadowing is based on retrodiction, this scheme can 
neither compress information nor predict new results for 
genuinely random sequences. The experimental information 
is simply transcribed into a pre-image selection sequence 
analogous to the “L-S” coding in (3.3b). Clearly, this is just 
another restatement of the Kolmogorov-Chaitin random- 
ness criterion [42]. 

4. SUMMARY: PHYSICAL IMPLICATIONS 

4.1. Summary of Results 

4.1.1. Correct Numbers versus Arbitrary Numbers. 

The basic conclusion that emerges from the shadowing 
studies is that the computer iteration of chaotic functions 
can yield trajectories that closely approximate portions of 
the exact orbits despite the cumulative growth of roundoff 
and truncation errors. The net effect of the machine pertur- 
bations is simply to shift the computed sequence of values 
from the vicinity of one exact trajectory to the proximity of 
another exact trajectory. Apart from a few isolated excep- 

tions, shadowing results of this type apply to all elements of 
the computer generated orbits of CebySev mixing transfor- 
mations. Since the CebySev polynomials are conjugate to 
tent maps, some logistic transformations, and are also 
related to other classes of functions such as quantum 
mechanical probability distributions [43], these shadowing 
results have a general significance. 

In the particular case of Cebygev iterations, the existence 
of shadowing sequences can be established by several 
methods. For example, the analytic structure of simple 
orbits, such as the set of all C2 iterates that terminate in a 
two-cycle, can be determined explicitly; and it is then 
feasible to check directly to what extent the computer 
generated iterates can reproduce this structure. Alter- 
natively, a complex machine generated orbit such as the 
dominant C, orbit depicted in Fig. 4, may be regarded as 
the given structure; and shadowing then consists of verifying 
that every trajectory of this machine orbit can in fact 
be approximated by sequences of exact C, pre-images 
constructed with the help of the retrodictive algorithms of 
Section 2.4 and the Appendix. 

Of course computer simulations can go astray if the 
roundoff and truncation errors become too large. For 
instance, the step-wise perturbations, 6, in (l.l7a), can be 
magnified in a controlled way by deliberately throttling the 
accuracy of the computers’ arithmetic. Extensive trials 
with variable precision computations demonstrate that the 
CebySev iterations become severely distorted when the rate 
of growth of the roundoff errors dominates the intrinsic 
mixing rate (Section 5 of Ref. [S] ). Under these circumstan- 
ces, shadowing will fail because the computed values of the 
iterates are not merely shifted from one “correct” Ceby6ev 
sequence to another, but are only weakly correlated with 
the algorithms that are programmed on the machine. In 
this respect, amplified computer noise can produce effects 
analogous to those that prevent the simple C2 algorithm 
from shadowing the more complex Csoo iterates. 

4.1.2. Shadowing and Orbit Structures 

Even though an entire computer generated orbit-such 
as the one shown in Fig. G-may be closely shadowed by a 
set of exact trajectories; the numerical match does not imply 
any generic correspondence between the analytic orbit 
structure and the orbits of the computer simulations. These 
differences arise from the finite nature of the machine com- 
putations and the fact that the shadowing sequences are 
constructed by entirely different means than the iterative 
trajectories that they numerically follow. 

For example, the most prominent features of the iterative 
computer network in Fig. 4 are: (i) the existence of initial or 
“orphan” points that constitute the sources for all machine 
generated trajectories; (ii) the marked tendency for all tra- 
jectories to merge into larger “river basins”; and (iii) the 
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iterative “clock,” or terminal loop, that is the canonical end 
state for all iterative processes on finite sets. General com- 
binatorial arguments show that deterministic simulations of 
random processes on finite sets, as well as randomly chosen 
mappings of finite sets, generate precisely these types of 
orbits [ 11, 13, 353. In this respect, the computer implemen- 
tation of the CebySev iterations yield reliable and quan- 
titatively correct results. Furthermore, the CebySev simula- 
tions have the shadowing property. But clearly the inference 
that shadowing also validates the computer modeling 
of the exact analytic CebySev orbits is unwarranted and 
misleading. 

The principal differences between computer shadowing 
and iterative processes are illustrated in Table XI. This 
example shows what happens when portions of a trajectory, 
such as the 18-element segment marked in Fig. 2, are 
traversed three times by two different computational 
schemes. First, the column headed “iteration sequence # 1” 
lists the successive numerical values obtained when the 
machine algorithm, C, of (2.14), is iterated by means of the 
recursion relation (2.16). This sequence of iterates merges 
into the computer two-cycle, Ct(X,,) =X,o, depicted in 
Fig. 2. Every element of this sequence also satisfies a 
numerical consistency condition: if X,- 1 and xi are two 
successive elements, then Xi-, must be part of the pre-image 
fan of Xi, cf. (2.20a); and Xj in turn must be the computer 
generated iterate of Xjp,. 

The second traverse of the segment xi” -x1,, by means 
of shadowing methods, yields the numbers listed in the 
column under “shadowing sequence.” All of these values are 
derived from the analytic and numerical results summarized 

TABLE XI 

Differences between Shadowing and Iteration Sequences 

Label of G 
point in iteration 

Fig. 2 sequence # 1 

G 
shadowing 

sequence 

-, 
C2 

iteration 
sequence # 2 

17 1.38 ‘.. 104 1.38.‘. 110 1.38...110 
16 1.04,..650 1.04...64J 1.04 ,628 
15 1.81 ,..312 1.81 ...3z 1.81 ...379 
I4 1.39...033 1.39,..1046 1.39 .‘. 1188 
13 1.04..,766 1.04,,.4776 1.04...4643 
I2 1.83 399 1.83”.2396 1.83...2&5 
11 1.43.,. 195 1.43,..93203 1.43...94439 
10 1.01 ... 102 1.01 ..,sm 1.01 ...sw 

9 1.93 ... 146 1.93..,019146 1.93 ,,.om 
8 1.77 ,833 1.77...439828 l.77,,.444 
7 1.29...960 1.29,..8- 1.29.,.8= 
6 1.16..,905 l.l6,..3m 1.16..,3= 

X54U I .46 . ,759 1.46...6m 1.46...6m 
x42u I .oo I 1 I 1.00...243114 1.00..,217665 
X3lU 1.97...682 1.97,..457679 1.97...858224 
x2LJ 1.90 373 1.90 ,..747373 1.90...129867 
XIU 1.65...373 1.65 ,..m 1.65 ,..m 

581:101/l-4 

in Table I. Clearly, the iteration and shadowing elements 
deviate at most by 1.3 x 10Vi6, and both sequences merge 
into the CZ two-cycle. But the shadowing elements are not 
constrained by any numerical consistency conditions. 
Consequently, a third traverse of this segment with a new 
series of iterations can yield completely different results. 
The column headed “iteration sequence # 2” in Table XI 
shows the computer output when another iteration is 
started at the “exact” shadowing value x,, -+ 1.38 ... 110, 
instead of at the old “inexact” value 1.38 ... 104. Evidently 
the C; iterations deviate rapidly both from the original C, 
iterations, as well as the ci2 shadowing elements. In fact, C; 
does not even belong to the same computer orbit! Instead of 
converging towards the C2 two-cycle, the C; trajectory 
merges into the terminal loop of the dominant C, orbit in 
Fig. 4 after 8, 114, 611 iterations. 

Of course, this behavior does not imply that the numbers 
generated by C, and e, are in any sense more exact or 
“correct.” There is no difficulty in constructing still other 
shadowing sequences that closely track Ch to validate its 
numerical and structural properties. The essential point is 
that behind the scrim of numerical resemblance, computer 
shadowing and iteration are inherently different processes. 

4.1.3. Shadowing and Statistical Properties 

Computer simulations of chaotic systems are frequently 
used to generate statistical information concerning 
their average behavior. For instance, in their pioneering 
investigations of energy exchange in complex systems, 
Fermi, Pasta, and Ulam modeled the non-linear coupling of 
sets of oscillators on computers and inferred the non-ergodic 
evolution of the energy distribution by statistical sampling 
of the numerical solutions [44]. In contrast, mixing systems 
such as billiards in a stadium or Cebysev iterations are 
ergodic, and this property is also reflected in computer 
simulations. Nevertheless, there are no general results that 
guarantee the validity of computer generated statistics for 
these kinds of systems. 

It has been argued that at least in those cases where the 
computer models of chaotic systems have the shadowing 
property, there is an a priori assurance that sampling the 
numerical orbits does yield the correct statistics for the 
actual systems [ 141. But this argument has a gap. Consider, 
for example, the C, shadowing sequence in (3.3b): 

i-J=LC;‘oLC;la ... .Lc;losc~‘oLc;~. (4.1) 

Since this expression is the numerical approximation for a 
simple deterministic process-the C, iterations-implemen- 
ted by a specific program on a particular computer, the 
entire chain of LC;l, ’ C; ’ functions in (4.1) is, in prin- 
ciple, completely determined for every trajectory in all the 
computer orbits. But then, why is it necessary to resort to 
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interval arithmetic experiments [3, 41, or to step-by-step 

retrodictions in order to verify the existence of shadowing 
trajectories? Clearly, the reason is that the theory of com- 
puter arithmetic is not yet sufficiently developed so that one 
can dispense with the numerical trials 1291. We do not even 
have any direct tests that distinguish between orphan points 
and interior points in computer orbits, 

The only conclusion that is justified by shadowing 
sequences such as (4.1) is that the numbers generated by 
computer iterations are not arbitrary, but approximate the 
elements of an exact trajectory. However, this still does not 
guarantee the statistical fidelity of the simulations. The 
statistics depend on the actual distribution of values along 
the computer trajectories, and these, in turn, are encoded by 
the specific sequence of ‘C 2 ’ and ‘C; ’ functions in 
shadowing expressions such as (4.1). Since these L, S, . . . 
patterns cannot be predicted by any current methods, 
both shadowing and statistical properties have to be 
established by.empirical computer trials. 

4.2. Physical Implications 

The iteration of the CebySev polynomials can be modeled 
by physical systems as well as by digital computer 
simulations. For instance, the mapping x-+x2 - 2 can be 
reproduced by voltage variations in analogue computer 
elements such as biased product detectors [28]; and the 
trigonometric representation of the iterates, 

c;(x) = cos(2P cos ~ l x) (4.2) 

can be modeled by sets of gears linked together to form a 
“logarithmic clock” [45]. Each of these physical devices 
highlights special features of the CebySev iterations. For 
example, the CebySev polynomials form a semi-group under 
composition, 

c;uc;=cI+“, P, 4 = 1, 2, . ..> (4.3) 

but it is not possible to extend (4.3) to non-integral values 
of p and q [ 91. Consequently, the CebySev polynomials can- 
not be embedded in a flow; and, in particular, C,(x) has no 
fractional iterates whatsoever [46]. Physically this means 
that any voltage transducer with the property that 

V(output) = [ V(input)]‘- 2 (4.4) 

is an irreducible circuit element in the sense that it cannot be 
replaced by two other identical transducers that generate 
the voltage transformation (4.4) when connected in cascade. 
The fact that there is no flow that assigns values “in 
between” the iterates C;(x) and C;+‘(x) also implies 
that the CebySev trajectories cannot be derived from 
Hamiltonian dynamics. In general, functions can be 
embedded in flows-or continuous iteration semi-groups- 
only if their iterative structures satisfy highly restrictive 

compatibility conditions. For example, every function in a 
one-dimensional flow with continuous trajectories must be 
non-decreasing; consequently such flows are not suitable for 
describing chaotic systems [47]. On the other hand, the 
baker’s transformation-which is a two-dimensional mixing 
transformation suitable for modeling chaotic behavior-is 
not embeddable in a flow [48]. These examples illustrate 
the assertions of Poincare and Krylov that the description 
of disordered systems lies outside the scope of Hamiltonian 
dynamics [49, 501. 

The logarithmic clock model shows that it is feasible to 
combine smooth evolution with the CebySev iterations by 
interpolating between the iterates C:(x) and C;+ i(x) in a 
physically reasonable way. This construction does not con- 
flict with any of the preceding results because the discrete 
CebySev iterates are embedded in continuous higher dimen- 
sional trajectories. There are also abstract methods for 
associating discrete n-dimensional mappings with differen- 
tiable trajectories in (2n + 1 )-dimensional spaces [ 511. In 
the case of the mechanical gear model, the smooth evolution 
has been secured at a price. As shown in [45], the 
logarithmic clock trajectory is a three-dimensional variable 
pitch helix-a differentiable curve without any chaotic 
filigrees. Evidently, the embedding has not only “smoothed” 
the CebyHev trajectories, it has also obliterated all of 
their pseudo-random properties. Conversely, this example 
demonstrates how the mixing properties of the CebySev 
iterations arise from the selective omission of information 
and the illusion of dimensional reduction. 

The connections between physical and abstract models of 
chaotic systems also affect the physical interpretation of 
various ergodic theorems: (1) For instance, if ergodicity is 
identified with metric transitivity, then it is well known that 
Hamiltonian flows can never be ergodic [23]. An elemen- 
tary corollary is that the trajectories of the logistic map 
(1.1) are not derivable from Hamiltonian mechanics. 
(2) Ergodicity is also incompatible with Hamiltonian 
mechanics if it is interpreted in the original (Boltzmann) 
sense of systems that wander everywhere in phase space. 
Trajectories that are derivable from Hamiltonian mechanics 
can not reach everywhere in phase space because of 
measure-theoretic restrictions [52]. And if they do reach 
everywhere, the 
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example. (4) Geodesic flows on closed surfaces with 
negative curvature are ergodic [ 1, 553. This result may have 
physical implications because it is plausible to identify these 
flows with the dynamics of an object constrained to move 
on a surface with a metric that has negative curvature 
everywhere. However, a straightforward realization is 
impossible because closed surfaces with negative curvature 
cannot be isometrically embedded in three-dimensional 
Euclidean space. One way of circumventing this difficulty 
with a physical arrangement was suggested by Kolmogorov 
[56]; but subsequent work still has not led to any 
conclusive results [ 573. 

A close correspondence between computer simulations 
and chaotic physical systems prevails in cases where the 
evolution is described by strings of pseudo-random num- 
bers. Ferromagnets are a representative example. In these 
systems, the response to variations of an external magnetic 
field consists of a wandering through a tremendous multi- 
plicity of metastable states+ach corresponding to a locally 
stable configuration of the magnetic domain structure. 
In principle, this evolution is deterministic-specially 
in macroscopic systems where quantum effects are 
irrelevant-but of course it is history dependent and 
extremely sensitive to initial conditions. Pseudo-random 
computer simulations can be used to model these hysteresis 
effects [18]. In fact, since the computers themselves are 
complex switching networks with many states or displays, 
this correspondence is really not a simulation, but rather 
a comparison of two physical systems with analogous 
properties. Schematically, 

ferromagnet c* computer 

+ pseudo-random number algorithm. 

This simple equivalence suggests a broader perspective on 
the role of computers in statistical physics. For example, 
instead of regarding the differences between the “correct” 
orbit in Fig. 1 and the “incorrect” orbit in Fig. 2 as annoying 
distortions introduced by computer roundoff and trunca- 
tion errors, it is also possible to consider the trajectories in 
Fig. 2 as interesting manifestations of a new symmetry 
breaking mechanism latent in complex switching networks. 
A similar emphasis on the physical aspect of computing has 
already yielded useful results concerning energy dissipation 
and information processing [58]. Further studies of the 
physical properties of complex switching networks are likely 
to be fruitful. 

APPENDIX: THE c, ALGORITHM 

The construction of shadowing sequences requires the 
numerical evaluation of pre-image relations involving 
cos(An/B), where A and B may be very large numbers. In 

particular, Eqs. (2.7a)-(2.8) imply that both the numerator 
and denominator of the cosine’s argument increase 
monotonically with successive pre-images. Unchecked, 
this monotonic growth would quickly result in arithmetic 
overflow. This is avoided by dividing the numerator by 
a common factor as soon as the denominator reaches a 
critical size, viz. 

Nx 10rnf” Nx 10” 
D x 10”+d=-DX1Od’ 

when m + d > 500, m = 450. (A.1) 

Because of the limited computer memory, the values of the 
numerator and denominator eventually exceed the available 
storage capacity. However, in virtue of the monotonic 
growth, the most significant digits can be determined with 
adequate precision. Typically, if the exact pre-image is 

1 
- cos 
2 ABl,B%l,B>A, (A.21 

then the machine representation is equivalent to 

A%a,B$b,B+b>A+a, 

(A.31 

where a and b are digits that will be lost because of the com- 
puter’s limited memory. The difference between (A.2) and 
(A.3) is bounded by a term of order Max { a/B, b/A }. There- 
fore, if all of the pre-images are computed in quadruple 
precision, the error will be of the order of 10-30. This is an 
adequate margin of safety for 10’ iterations accurate to 
double precision. 
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